Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Neuroscience Bulletin ; (6): 875-894, 2020.
Article in English | WPRIM | ID: wpr-826752

ABSTRACT

In the central nervous system, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential to maintain normal neuronal function. Recent studies have shown that HCN channels may be involved in the pathological process of ischemic brain injury, but the mechanisms remain unclear. Autophagy is activated in cerebral ischemia, but its role in cell death/survival remains controversial. In this study, our results showed that the HCN channel blocker ZD7288 remarkably decreased the percentage of apoptotic neurons and corrected the excessive autophagy induced by oxygen-glucose deprivation followed by reperfusion (OGD/R) in hippocampal HT22 neurons. Furthermore, in the OGD/R group, p-mTOR, p-ULK1 (Ser), and p62 were significantly decreased, while p-ULK1 (Ser), atg5, and beclin1 were remarkably increased. ZD7288 did not change the expression of p-ULK1 (Ser), ULK1 (Ser), p62, Beclin1, and atg5, which are involved in regulating autophagosome formation. Besides, we found that OGD/R induced a significant increase in Cathepsin D expression, but not LAMP-1. Treatment with ZD7288 at 10 μmol/L in the OGD/R group did not change the expression of cathepsin D and LAMP-1. However, chloroquine (CQ), which decreases autophagosome-lysosome fusion, eliminated the correction of excessive autophagy and neuroprotection by ZD7288. Besides, shRNA knockdown of HCN2 channels significantly reduced the accumulation of LC3-II and increased neuron survival in the OGD/R and transient global cerebral ischemia (TGCI) models, and CQ also eliminated the effects of HCN2-shRNA. Furthermore, we found that the percentage of LC3-positive puncta that co-localized with LAMP-1-positive lysosomes decreased in Con-shRNA-transfected HT22 neurons exposed to OGD/R or CQ. In HCN2-shRNA-transfected HT22 neurons, the percentage of LC3-positive puncta that co-localized with LAMP-1-positive lysosomes increased under OGD/R; however, the percentage was significantly decreased by the addition of CQ to HCN2-shRNA-transfected HT22 neurons. The present results demonstrated that blockade of HCN2 channels provides neuroprotection against OGD/R and TGCI by accelerating autophagic degradation attributable to the promotion of autophagosome and lysosome fusion.

2.
Acta Pharmaceutica Sinica ; (12): 565-571, 2006.
Article in English | WPRIM | ID: wpr-271406

ABSTRACT

<p><b>AIM</b>To study the effect of ZD7288 on synaptic transmission in the pathway from perforant pathway (PP) fibers to CA3 region in rat hippocampus.</p><p><b>METHODS</b>The extracellular recording technique in vivo was used to record the CA3 region field potentials. High-performance liquid chromatography (HPLC) with fluorescence detection was applied to measure the content of amino acids in hippocampal tissues. The effect of ZD7288 and CsCl on the amplitudes of population spike (PS) in CA3 region evoked by stimulation (0.5 Hz) of the perforant pathway (PP) fibers, and the content of amino acids in hippocampal tissue were observed.</p><p><b>RESULTS</b>Microinjection of ZD7288 (20, 100 and 200 nmol) and CsCl (1, 5 and 10 micromol) into CA3 region decreased the population spike (PS) amplitudes in a dose-dependent manner. The inhibitory effects appeared at 5 min after microinjection and lasted at least 90 min. In those rats treated with ZD7288 (100 nmol), the contents of glutamate, aspartate, glycine and GABA decreased significantly as compared to those of saline control (all P < 0.01, except P < 0.05 for that of glycine). A similar decrease in the contents of amino acids was observed when the rats were microinjected with CsCl (5 micromol). CONCLUSION; ZD7288 could obviously inhibit synaptic transmission in the pathway from PP fibers to CA3 region in rat hippocampus, and this action of ZD7288 may be associated with altered contents of amino acids.</p>


Subject(s)
Animals , Male , Rats , Amino Acids , Metabolism , Cesium , Pharmacology , Chlorides , Pharmacology , Dose-Response Relationship, Drug , Evoked Potentials , Hippocampus , Metabolism , Physiology , Microinjections , Perforant Pathway , Physiology , Pyrimidines , Pharmacology , Rats, Sprague-Dawley , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL